
Commentary 
Treating pain is challenging, perhaps uniquely so in medi-

cine. The proper treatment of pain requires modulation (atten-
uation) of pain pathways, rather than the elimination of pain 

sensation, since complete elimination eliminates detection of 
tissue damage (people born with a genetic insensitivity to pain 
are at much greater risk of injury).1 A major evolved mechanism 
for pain sensation-perception attenuation is the endogenous opi-
oid system, thus is a rational target for opioid analgesic drugs.2  

The traditional, or “typical”, opiates (e.g., morphine and 
codeine) and other morphine-like opioids interact with the en-
dogenous opioid system to produce analgesia, but they also 
have well-known negative aspects (e.g., respiratory depression, 
nausea and vomiting, sedation, constipation, immune suppres-
sion, and substance-abuse potential among others).3 Decades of 
pharmacologic research have revealed that the actions of opi-
oids are mediated via specific (opioid) 7-transmembrane G pro-
tein-coupled receptor (7-TM GPCR) subtypes (e.g., mu-, delta-, 
kappa-OR) and 2nd-messenger pathways.4,5 “Tweaking” of var-
ious aspects of the interaction with these receptors and path-
ways have been attempted in drug-discovery efforts to separate 
the desirable from the undesirable clinical characteristics of opi-
oid analgesics.6 Creative and impressive incremental advances 
have been made, but translation to drugs having major clinical 
advantage has been generally disappointing. 

Simultaneously with the advances in the pharmacology of 
analgesics has been important advances in the understanding 
of the physiology of pain, normal and aberrant. Notable among 
these, for example, have been the development of insight into: 
gate control theory;7 “wind-up” and sensitization (central and 
peripheral);8 pain chronification (transition from acute to 
chronic);9 the contribution of genetics and epigenetics and the 
microbiome;10,11 among many others. Two of the most signifi-
cant for an understanding and development of ‘atypical’ opioids 
has been the recognition of types of pain rather than just degree 
of pain, and elucidation of the pathways involved in the pain 
modulatory system known as diffuse noxious inhibitory control 
(DNIC). 

Pain conditions were traditionally treated based on only one 
dimension – magnitude, or level.  It was described with terms 
such as “mild”, “moderate”, or “severe”, and the class of anal-
gesic was chosen on that basis: e.g., a non-steroidal anti-inflam-
matory drug (NSAID) or acetaminophen (paracetamol) for 
“mild”; codeine or similar or combination for “moderate”; and 
opioid for “severe”. Such a classification scheme and decision-
tree was sometimes adequate, but was often inadequate, leading 
to under- or over-dosing of one category of analgesic, when an-
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ABSTRACT 
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other would have been a better match.12 It became clear that 
pains can differ in their underlying cause (physiology) as well 
as in their clinical intensity.  It seems difficult to imagine that 
the pains from a puncture wound, blunt-force injury, snake bite, 
cancer, and a burn are identical.  Therefore, an optimal pain 
treatment strategy would involve the matching of analgesic 
pharmacologic mechanism of action with the causative pain 
physiologic mechanism. A now-recognized common example 
of this is the general superiority of ibuprofen (an NSAID) vs 
opioids for treating dental-extraction pain (due to the anti-in-
flammatory action of NSAIDS such as ibuprofen and lack 
thereof with opioids).13 

The second major shift in thinking about pain involved the 
recognition of the existence and physiologic advantage of mod-
ulation of the pain sensation. Important for messaging tissue 
damage, excess or unnecessarily prolonged signaling can be 
detrimental to addressing the immediate threat, and to recovery 
after an injury.14 This led to greater appreciation and study of 
the endogenous modulatory pathways (DNIC).15 And led to a 
shift away from an exclusively unidirectional (“ascending”) in-
jury ® pain model to a bidirectional model that incorporates a 
modulatory (attenuating, ‘descending’) pathway. Extensive re-
search identified several major descending pathways, and neu-
rotransmitter systems, such as adrenergic and serotonergic.16 In 
addition to advancing the study of pain, the new findings of 
bidirectional pathways provided new opportunities for the dis-
covery of analgesics that could target either the ascending or 
the descending pathways – or both. Those that target ascending 
opioid pathways plus one or more non-opioid descending path-
ways are the ones referred to as ‘atypical’ or ‘multi-mechanistic’ 
opioids.17 

Two of the three currently FDA-approved multi-mechanis-
tic opioids were discovered by serendipity (buprenorphine and 
tramadol) and the contribution and details of their multi-mech-
anistic pharmacology were discovered after their initial synthe-
sis.18,19 Tapentadol, the third, was designed from the outset to 
be a multi-mechanistic opioid.20 Cebranopadol was also de-
signed to be multi-mechanistic, and currently is in clinical de-
velopment.21 

Tapentadol is the one that was designed with the most 
straight-forward pharmacology, and for the greatest clinical 
simplicity, so it will be summarized as an example of the group. 
Tapentadol targets both the ascending opioid and descending 
non-opioid pathways.  Its dual mechanisms of action are con-
tained within a single molecule (not a racemate or in conjunc-
tion with an active metabolite), and it undergoes Phase 2 
metabolism (not mediated by CYP-450, so fewer drug-drug in-
teractions).22 Regarding tapentadol’s opioid component, it has 
about 10-fold greater binding affinity for the mu-OR (96 nM) 
than for the delta-OR (970 nM) or kappa-OR (910 nM).23 Its 
binding affinity at the mu-OR is about 50-fold lower than that 
of morphine.  Regarding its non-opioid component, tapentadol 
inhibits the neuronal reuptake of norepinephrine, with little ef-
fect on neuronal serotonin reuptake in vivo.23 The two mecha-
nisms of action interact synergistically in pain models,24 
yielding potency across a variety of pain models only 2- to 3-
fold less than morphine despite its 50-fold lower affinity for the 
mu-OR.23 Importantly, the synergistic interaction does not ex-
tend to adverse effects, as demonstrated for constipation,25 thus 
providing a greater separation between therapeutic and adverse 
effect. Additionally, the non-opioid component targeting DNIC 
contributes to higher potency in models of neuropathic pain 
compared to typical opioids.26         

Summary and Conclusions 
“Typical” (traditional, standard) opioids have been available 

for decades (e.g., oxycodone, hydrocodone, etc.) or even cen-
turies (e.g., morphine and codeine). Their ability to inhibit in-
coming pain signal transmission to the brain (‘ascending’ 
pathways) has been well known.  But recent research of pain 
and analgesic physiology has revealed the importance of “de-
scending” pain-modulatory pathways. This led to the recognition 
of a category of opioid analgesics that has actions on both “as-
cending” opioid pathways and “descending” non-opioid path-
ways. Two were recognized after being already used clinically 
and two were designed de novo (one in clinical practice, one in 
development). Each has a better clinical profile than traditional 
opioids. 
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